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Abstract. Aluminium samples in the form of single crystals were treated by uniaxial tensile
strain, so that dislocations were practically the sole type of defect produced. A positron lifetime
study of these samples, carried out at different dislocation densities, and in a wide temperature
range, gives information about the mechanism of positron trapping, including trapping rates,
binding energy and the development of defect density with deformation and applied stress.

1. Introduction

For more than 25 years the positron annihilation method has been applied to study the
creation and presence of defects in metals. However, this promising and often useful
method has scarcely reached the stage where the positron observations can be interpreted
unambiguously in terms of a spectrum of defects. In particular, it appears difficult to clarify
the role of the most enigmatic defect, the dislocation, which in the literature is described
some times as a deep, and at other times as a shallow positron trap. In the present work we
attempt to obtain improved information about the dislocation, by producing and studying
metal samples containing as little as possible of other defect types.

The original samples were single-crystal strips of pure aluminium, which were subjected
to uniaxial tensile stress in steps of increasing magnitude, providing samples with different
degrees of strain. After such a treatment the content of defects was expected to consist
almost exclusively of dislocations, free from interference caused by vacancy-type defects,
grain boundaries or impurities. Positron lifetime spectra were recorded at a range of
temperatures. We propose, and apply, a model which appears to be suitable for the analysis
of the data in terms of the positron trapping mechanism, binding energy and defect density.

2. Experimental method

The aluminium samples consisted of two rectangular strips, measuring 26×4.6×0.65 mm3,
which were cut from a single crystal of purity 99.9999%, annealed at 620◦C, and thereafter
electropolished. In a number of stages each strip was subjected to an uniaxial elongation
along the longest edge, at room temperature, to produce samples with the values of strain
ε = 1l/l = 0.8, 2, 4, 7, 11, 16 and 28%. The positron lifetime equipment was of a
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conventional type. A22NaCl positron source wrapped in thin nickel foil was sandwiched
between two sample strips, and positioned in a closed circuit cryostat. Positron decay
spectra were observed by a pair of NE102A scintillators, being part of a fast–slow lifetime
spectrometer, having a time resolution corresponding to 280 ps FWHM. For each set of
samples, including the undeformed one, positron lifetime spectra were obtained at a series
of temperatures between 16 and 292 K.

Figure 1. (a) The two-state and (b) the three-state positron trapping model. Sx represents
occupation of statex. Other symbols are explained in the text.

The raw experimental data were treated with the computer program PATFIT-88
(Kirkegaardet al 1989). For the resolution function it was found satisfactory to employ
a single Gaussian with FWHM about 292 ps. However, in order to obtain the statistically
most trustworthy results, it appeared necessary to establish a specific resolution width for
each new mounting of a set of samples. The best choice of FWHM could vary within about
5 ps. One reason for these variations could be the difficulty of ensuring that the mountings
of source, sample and scintillators are exactly identical in every case. Clearly, a change in
the geometrical setup of the order of 1 mm could give rise to timing differences of about
3 ps, due to a change in the distribution of path lengths for gamma rays and light phonons.

A source correction of 7.2% was subtracted before further data treatment.

3. The two state trapping model

In a numerical analysis of the experimental data for deformed aluminium it was found
sufficient to employ the two-state trapping model (Brandt 1967), since in the present case
this gives a very satisfactory fit to the observations at all deformations and temperatures.
The notation of the model is given in figure 1(a). For the final state (S2) we find the
mean lifetimeτ2 = λ−1

2 = 220± 2 ps, which is valid for all values ofε, but most reliably
determined in the case of largest deformation,ε = 28%. τ2 was constrained to this value for
the final analysis. Results from the undeformed and annealed single-crystal sample provide
essentially only one lifetime component, representing annihilation in bulk metal. Its average
value isτb = λ−1

b = 153± 1 ps, increasing slightly with temperature. For the deformed
samples, the analysis provides the quantitiesτ1 = λ−1

1 , I1 and I2 = 1 − I1. In computing
λa = I1λ1 + I2λ2 one generally finds thatλ−1

a is slightly higher thanτb by a couple of
picoseconds. The two-state positron trapping ratesK12 = (λa − λ2)I2/I1 have been plotted
in figure 2 for some of the observed deformations and temperatures.
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Figure 2. Experimental results expressed in terms of positron trapping rateK12, as a function
of sample temperature, for three different degrees of deformation.

4. The three-state trapping model

A physical interpretation of the experimental data has been based of the following
assumptions.

(i) The defect content of the aluminium samples, deformed by uniaxial stress, consists
mainly of dislocations, with very little, if any, admixture of free point defects. Dislocation
jogs will appear increasingly as deformation is increased.

(ii) Positrons can be trapped to dislocations (trapping rate,κ), where they are weakly
bound, with binding energyEb, of the order of 0.05 eV (Martin and Paetsch 1972). In the
narrow free space of a dislocation the positron lifetime is short,λd ≈ λb.

(iii) The wavefunction of the trapped positron expands along the axis of the dislocation,
causing interaction with other defects, such as jogs (Doyama and Cotterill 1979). The
trapping rateη into jogs is fast, depending upon jog density, but not greatly influenced by
temperature.

(iv) For a positron trapped into a jog, the annihilation rate,λj , is expected to be similar
to, but somewhat faster, than the annihilation rate in a vacancy.

The trapping model resulting from these considerations is illustrated in figure 1(b), where
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positron transition rates from bulk metal to dislocations and from dislocations to jogs are
indicated, while, for the present purpose, we shall neglect detrapping from the dislocation-
bound state to bulk metal. This model is quite analogous to the scheme proposed by
Smedskjaeret al (1980), but here, in order to seek a connection between experiment and
theory, with a possibility of deriving numerical results, we employ a coarser, although more
concretely applicable model.

When solving the set of differential equations describing this system (in a manner
analogous to the discussion by Paghet al (1984)), one finds that the positron decays with a
time dependence consisting of three exponential terms, having ratesα = λb +κ, β = λd +η

andλj , with the apparent intensities (as extrapolated tot = 0)

Iα = 1 − [κ/(α − β)][1 − η/(α − λj )]

Iβ = [κ/(α − β)][1 − η/(β − λj )]

Ij = κη/[(α − λj )(β − λj )]

(1)

respectively, whereIα + Iβ + Ij = 1.
In order to interpret the observed two-state-analysis data in terms of the three-state

model, we note, as mentioned above, thatλd ≈ λb > λj = λ2. The decay ratesα andβ are
faster thanλd , and cannot be resolved in the detecting process. Therefore, in the two-state
analysis the observed fast decay rate must be a combination ofα andβ,

λ1 = τ−1
1 = (Iαα + Iββ)/(Iα + Iβ) (2)

with I1 = Iα + Iβ . Setting λb − λj ≈ λd − λj = 1λ, we obtain the intensity of the
longer-lifetime component

I2 = [(1 + 1λ/κ)(1 + 1λ/η)]−1 (3)

which in terms of the observed trapping rate is

I2 = (1 + 1λ/K12)
−1. (4)

Comparison between the observed and the real trapping rate to dislocations gives

κ = K12(1 + 1λ/η + κ/η) (5)

showing that the calculatedK12 is a lower limit of κ, valid in the case whereη � 1λ.

5. The temperature dependence of the trapping rate

Provided that it is justified to neglect detrapping of positrons from dislocations, and under
the condition thatη is basically a constant, the temperature dependence ofK12 must be
ascribed to the trapping rateκ(T ) = Dν(T ). Here, we introduce the specific trapping rate
ν into a unit length of dislocation, andD, the density of dislocations. In order to discuss
ν(T ) we again use the same arguments as Smedskjaeret al (1980), but here with less detail.
However, we try to be more specific with respect to possible comparisons with experiments.

As the binding energy for positron trapping in dislocations is expected to be very low,
the dominant trapping mechanism will be the emission of an acoustic phonon (Bergersen
and McMullen 1977, Smedskjaeret al 1980). WithE+, Eb andEp being the energies of
the free positron, of its binding in the dislocation, and of the emitted phonon, respectively,
the energy balance becomes

E+ = Ep − Eb. (6)
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Assuming the Debye approximation, we have a maximum for the phonon energy,ED = k2,
where2 is the Debye temperature, andk is the Boltzmann constant. This means that there
is a maximum energy for the positrons that can be trapped,

E+,max = ED − Eb. (7)

In terms of the golden rule, the specific positron trapping rate at temperatureT can be
written as

ν(E+, T ) = 2πh̄−1|Mif |2n+(E+, T )np(Ep, T ) (8)

whereMif is the positron trapping matrix element,n+(E+, T ) is the density of positrons
andnp(Ep, T ) is the density of final states, expressed in terms of phonon energy. We denote
2πh̄−1|Mif |2 = ν1(T ), being the basic trapping rate into a dislocation, here not necessarily
considered to be temperature independent.

It can be expected that the range of emitted phonon energies, [Eb; ED], is considerably
smaller thanED itself, so, for a givenT , the quantitiesν1 andnp will be nearly constant
in that interval. This assumption is supported by the final results obtained forEb. At high
temperatures,T > 2, the phonon occupation number is expected to be proportional toT ,
while the temperature dependence ofnp is less well known in the region between about
0.12 and 2. Since alsoν1 may be temperature dependent, we introduce an adjustable
exponentµ, so thatν1(T )np(T ) ≈ ν0n0T

µ with ν0 andn0 being constants.
The thermalized positrons obey the Boltzmann distribution,

n+(E+, T ) = 2π−1/2E
1/2
+ (kT )−3/2 exp(−E+/kT ). (9)

Integration over positron energies is now expressed as

ν(T ) = ν0n0T
µ

∫ k2−Eb

0
n+(E+, T ) dE+ (10)

where the integral has no analytic solution. For the purpose of fitting a function to the
experimental data, we replace the integral in (10) by

A[1 − (1 + s)2/3e−s ] (11)

wheres = (2 − Eb/k)/T . Expression (11) differs from (10) by not more than 3% in the
region 0.3 6 s 6 5, whenA = 1.02†.

6. Results and discussion

Of the two lifetimes emerging from the application of the two-state trapping model, the
longer one is consistently found to have the valueτ2 = 220± 2 ps, interpreted as the
positron lifetime in a typical dislocation jog. This is, as expected, slightly lower than the
positron lifetime in a vacancy, known to be about 245 ps. The shorter lifetime,λ−1

a , is
found to have values slightly higher than, on average by about 2 ps, the bulk metal value,
τb = 153 ps, but this difference has only been determined with a poor accuracy. Recalling
that λa is expected to be the unresolved average between the decay ratesλb in bulk and
λd in a dislocation line, we conclude that the magnitude ofλ−1

d must be in the region of
155–160 ps.

By use of the expression

K12 ≈ κ = cT µ[1 − (1 + s)2/3e−s ] (12)

† Another analytic expression, also providing a reasonable approximation to (a), has been given asνs(T ) =
ν0[1 + ρ exp(−γ T )], in which caseγ −1 ≈ 2(2 − Eb/k) (Trumpy 1994).
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curves have been fitted to the experimentally obtained valuesK12(T ) in order to determine
the best values for the parametersc, µ and s, wherec = Dν0n0A. We may expect that
the exponentsµ and s are largely independent of the degree of deformation. Applying
this condition in the curve-fitting process, we first found the statistically best value forµ,
common for all strains. Thereupon, with this value used as a constraint, the best value for
sT was found, and finally, when alsosT had been constrained, we obtainedc as a function
of the strainε. The results areµ = 0.76± 0.04 andsT = 28.7± 4.7 K, and the results for
c(ε) are plotted in figure 3. These final results were used to draw the continuous lines in
figure 2, showing the best fit of the model for some of the experimental data.

Figure 3. Observed relative variations of the dislocation density, expressed in terms of the
factor c, as a function of longitudinal deformation (squares) and applied stress (circles).

With 2(Al) = 394 K, and the value forsT , one obtains the binding energy for positrons
in a dislocation line,Eb = 31.0 ± 0.4 eV. This appears to be consistent with previous
dislocation-related results forEb in nickel (38± 10 meV) (Trumpy 1994) and in zinc
(40± 20 meV) (Hidalgoet al 1987). SinceEb/k = 365 K, it is seen that the assumption
of a small detrapping rate has been justified for observations below room temperature.
However, it is apparent from figure 2 that the observed values forK12 at room temperature
fall somewhat below the calculated curves, as must be expected when the detrapping effect
is neglected in the curve fitting.

The value obtained forµ is related to two different physical properties. For the applied
range of temperatures, it may be reasonable to setnp = n0T

(1+γ ), whereγ is expected
to be a small positive number. In this case we haveν1 = ν0T

−(0.24+γ ). The negative
T dependence ofν1 has a parallel in the behaviour of positron trapping ratesKv into
vacancy-like defects, which were shown to obey the relationKv = a + bT −1/2 (Trumpy
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and Petersen 1994). These results are at variance with a long-standing theoretical statement
that the trapping rate matrix elementMif is independent ofT , in analogy with slow neutron
absorption in nuclei (Hodges 1970, 1974, Brandt 1974). The derivation of this result hinges
on the condition that the penetration factorT for entering the potential well is proportional
to the particle velocityv. This requires that the potential has a steep edge, and is deep
compared with the energy of the incoming particle. Neutrons interacting with nuclei are
clearly obeying this rule, but its applicability to positrons and dislocations (or vacancies) is
not quite evident. One can also consider the phase shift of the particle wave as it passes
through, and is emitted from the other side of the potential well. In the case of a very
small phase shift, the factorT is almost independent ofv. For neutrons on nuclei the phase
shift is many radians, but for positrons on dislocations it amounts to about 0.2 rad. As a
consequence of these considerations we believe that the theory for the matrix element for
positron trapping at dislocations (and at vacancies) would not necessarily predict temperature
independence, indeed, a resulting negative temperature coefficient should be expected.

Figure 3 shows the value ofc, which is proportional to dislocation densityD, as a
function of strain, and, on the right, as a function of stress. In both cases one obtains
roughly a linear dependence for the data when they are presented in a log–log diagram.
The straight lines in the figure represent the relationships

D = Cεε
0.62 = Cσσ 2 (13)

where Cε and Cσ are constants. We note with interest the parallel between our result
and the old observation that the dislocation densityD is proportional to the square of the
applied shear stress (Haydenet al 1965). In view of the assumptions that the defects are
dislocations, and that our model is applicable, this is a reassuring information.

7. Conclusion

We have presented a method which can be used to study the positron trapping mechanism
in dislocations, and to investigate changes in the dislocation network as a function of
deformation. Numerical data have been given for positron lifetimes, for the binding energy
in a dislocation and for the variation of dislocation density with tensile stress and strain,
in the case of pure aluminium. In view of the obtained results, we believe that the model
is basically sound, and can be used for a consistent analysis of positron annihilation data
in the presence of dislocations, even when other defect types, such as vacancies and grain
boundaries, complicate the observation. In the form presented here, the method is rather
coarse, although reasonably reliable for the range of data studied. As possible extensions,
in a data analysis covering higher and lower temperatures, one could include detrapping of
positrons from the dislocation line, and the analytic expression representing the integral in
equation (10) could be extended, for instance by introduction of additional terms. Further,
instead of using the Debye approximation, one could try the quite elaborate process of
employing a more realistic spectrum for available phonon states.
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